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Abstract. We prove the existence of a class of exact eigenvalues and eigenfunctions of the 
Schriidinger equation for the potential 

AX2 
x*+- 

l+gx2 

when certain algebraic relations between A and g hold. Some of the properties of these 
solutions are discussed. It is shown that in a certain sense they may be regarded as Sturmians 
for the Schrodinger equation with the potential 

1. Introduction 

The purpose of this work is to investigate the Schrodinger equation 

g > o  - Ax 
Y " ( x )  + ( E  - x 2  - _?) y ( x  ) = 0 l+gx 

where E is the eigenparameter and A is a real number. This equation appears in several 
areas of physics. In field theory it provides a simple zero-dimensional model possessing 
a non-polynomial Lagrangian (Biswas et a1 1973). In laser physics it arises out of the 
Fokker-Planck equation for a single-mode laser (Risken and Vollmer 1967, Haken 
1970). 

Equation (1.1) has been studied numerically by Mitra (1978) and by Bessis and 
Bessis (1980) using variational and perturbation methods in the case A > 0. Recently 
(Flessas 1981) the existence of exact solutions, valid when certain algebraic relations 
between A and g hold, and which can, moreover, be written in closed form, has been 
demonstrated. 

In this paper we will begin by proving the existence of a class of solutions which, 
when A and g are suitably chosen, may be written as terminating polynomials. In view 
of the restrictions on A and g, these do not constitute the complete set of solutions; 
indeed, for arbitrary A and g there may well be no such solutions. In 0 2 we derive the 
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required results using the theory of linear differential equations, while in 8 3 we 
examine the solutions so obtained by an algebraic method and show that, from this 
point of view, their existence is a consequence of certain algebraic peculiarities of the 
Hamiltonian of (1.1). In 0 4 we show that the solutions in question are the Sturmians of 
a related differential equation, and in 0 5 we summarise the results. 

2. The set of exact solutions 

2.1. Treatment of the Schrodinger equation 

The substitutions 

transform (1.1) into 

[t(Eg - A  - g )  + E  - l ] t  P( t )  = 0. 
4t2(1 + gt) 

P'(t)  + -4gt2 + t(2g - 4 )  + 2 
4 t ( l  +gt) 

P"(t) + 

The indicia1 equation of (2.2) has roots 0 and 4 which correspond respectively to the 
even-parity and odd-parity states; these two types form a fundamental system for (2.2). 
In what follows we will confine ourselves to the even-parity case. The treatment of the 
odd-parity states is identical, and the relevant formulae will be given at the end of § 2. 

In the usual way we have that 

is an exact solution of (2.2) convergent for t E [0, a), since the only singularities of (2.2) 
are at t = O  and t = a .  Inserting (2.3) into (2.2) we get the three-term recurrence 
relation 

C k i l P k  + c k y k  + C k - 1 S k  = 0 k=0 ,1 ,2 ,  . . .  C-1 = O  (2.4) 

where 

P k  = 2(k + 1)(2k + 1 )  Y k  = E - 1 + k (4kg - 2 g  -4) 

& = E g - A  -g -d (k - l )g .  (2.5) 

From (2.4) it follows immediately that 

In closed form Cn is given by 

n=0 ,1 ,2 ,  . . .  (-1)"Dn C, =- 
(2n)! 

CO= 1 (2.7) 
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E - 1  2 0 0 

Eg-A-g E - 1 + 2 g - 4  2 . 2 . 3  0 

0 (::::$ E-1+2(6g-4) 2 . 3 . 5 . .  

0 
Eg-A - 

0 ( E-1+3(10g-4) ' * ' * * . . ,  
- 2 . 4 . g  . .  

1 E -  1 + ( n  - 1) 

In order that not all the C,, vanish identically it is necessary that 

D, = 0. (2.10) 

The condition (2.10), while ensuring the existence of the C,, and the convergence of 
the continued fraction (2.6), does not, however, necessarily imply that P ( t )  increases 
sufficiently slowly as t + 00 for y ( x )  = P( t )  exp(-t/2) to remain normalisable. This is, of 
course, well known in the usual treatment of the one-dimensional harmonic oscillator, 
which in fact corresponds to A = 0 in (1.1). In that case,as here, the infinite series (2.3) 
exists but is non-normalisable and so not acceptable as a physical solution. One should 
investigate the precise form of the limit Cfl+l /Cfl~fl+oo and from it infer the behaviour of 
P( t )  for t + m. In our case the basic relation (2.4) gives trivially Cn+l/Cfl~n-.m = 0, a fact 
already known from the convergence of (2.3); indeed, we have I ( C f l + l / C f l ) t l n + m <  1, 
t E [0, m) and so again Cfl+l/Cfl~n+ao = 0. In the absence of a more detailed expression 
for this limit, (2.10) cannot guarantee that the infinite-series solutions are physical. 
They may be but we cannot yet say. Instead, as in the treatment of the harmonic 
oscillator, we look for solutions in which the series (2.3) terminates. 

2.2. Polynomial-type solutions 

Terminating solutions may be obtained by requiring that CN = 0 for N > n + 1. Then 
we see from (2.6) and (2.7) that we need the following to hold: 

Eg-A -g=4gn n = 1 , 2 , 3 , .  . . (2.11) 

D,+l= 0. (2.12) 

For n = 1,2 equations (2.1 1) and (2.12) give rise to the particular cases found by Flessas 
(1981). 

It is worth noticing here that, although the potential under discussion is markedly 
different from that of the doubly anharmonic oscillator (Singh et a1 1980) or that of the 
generalised anharmonic oscillator (Flessas and Das 1980, Magyari 1981), it shares with 
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them the presence of polynomial-type solutions. An important difference, however, is 
that, while in the case of the anharmonic oscillator the existence of the polynomials has 
to be examined for each n separately (Singh et al1980), we have in the present case the 
following theorem. 

Theorem 2.1. Conditions (2.11) and (2.12) are sufficient for the existence of 

P f l ( t )  = 1 CPY 
fl 

n = 1 , 2 , .  . . . 
k =O 

(2.13) 

Proof. To prove this it is evidently sufficient to show that the algebraic equation of 
degree n + 1 obtained by putting (2.11) into (2.12) has real roots in A ( g )  or g(A). Writing 
z = A / g  we have 

4 n + z  2 0 
4gn 4 n + z + 2 g - 4  2 . 2 . 3 .  . . . .  
0 4 g n - l . 4 . g  . 4 n + z + 2 ( 6 g ~ 4 )  " e .  ' .  

= 0. 
* .  ' .  a .  

' a .  

2n(2n - 1) 
0 0 

* ' 4gn - (n  -1)4g 4n + z + n(4g(n +2) -  log-4)  

(2.14) 

For A = 0 (1.1) reduces to the Schrodinger equation for the one-dimensional harmonic 
oscillator, and since its eigenfunctions are of the form (2.13) we expect A = 0 ( z  = 0) to 
be one of the roots of (2.14). Indeed, this is so as may be seen from (2.14) by setting 
z = 0 and then subtracting from each row the previous one multipIied by g. Then 

0 
0 4 n - 4  2 . 2 . 3 .  

0 0 
Dfl+1(*=0= 0 0 4 n - 2 . 4  *. .  (2.15) 

0 .  .. 
. *  . .  . .  

0 4 n - n . 4  

and the vanishing of the last row proves the assertion. 
To prove the reality of the other roots it is only necessary to notice that Dn+l is 

tri-diagonal with real positive off-diagonal elements. Then Dn+l is identical with a 
symmetric determinant gnil whose elements are 

% + I ( i ,  i )  = Dfl+l(i, i) 
9n+l( i ,  i + 1) = g,,+l(i + I, i )  = [Dncl(i + I ,  i)D,,+l(i, i + I)]''* 

and the reality of the roots is apparent. 
For arbitrary g > 0 and any n we can find from (2.14) n + 1 real values of A, which 

will depend on g, and thence the n + 1 energies from (2.11). The corresponding 
polynomials P,,(t) may then be deduced from (2.7), (2.8). This completes the proof of 
theorem 2.1. 

A further result of physical importance can be established immediately: 

Theorem 2.2. The non-zero roots of (2.14) are all negative. 
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Proof. The sub-determinants 

4n - (-2) 
D','tl = 4n - (-2) Dk2i1 = 1 4gn 

constitute a Sturm sequence (the roots of D!il separate those of D!::'). It may be 
shown that, as is well known in numerical analysis (Gantmacher 1959), the number of 
agreements in sign between successive members of the sequence 

1 DL1:i (x) Dk2:i (x) . . .  Dn+l(x) 

is equal to the number of roots of Dn+l(x) which are greater than or equal to x. Setting 
-2 = x = 0 (2.15) shows that there are n + 1 sign agreements and thus the n + 1 values of 
-2 are all greater than zero. So for fixed g > 0 polynomial solutions exist only for A C 0. 

2.3. Odd-parity solutions 

The foregoing results hold also for the odd-parity solutions but with the following 
differences. In place of (2.3) we have 

co 

k =O 

k + l l 2  H ( t ) =  1 dkf 

and the dk satisfy a three-term recurrence relation like (2.4) but with coefficients 

= 2(k + 1)(2k +3)  r; = E - 1  +2(2k + I ) ( &  - 1) 

s ;=Eg-A-g -2 (2k - l )g .  

The important relation (2.1 1) is replaced by 

Eg-A - g  = 2g(2n + 1) n =1,2 ,3 , .  . . 
and A ( g )  is determined by solving the analogue of (2.14). 

3. The algebraic method 

In this section we treat the same problem as before by introducing a basis and 
proceeding algebraically. The object here is to bring out the particular features of the 
differential equation (1.1) that allow the polynomial-type solutions to exist and which 
are not readily apparent from the treatment of 8 2. 

3.1. The oscillator basis 

The natural basis for an algebraic investigation of (1.1) consists of the eigenstates In) of 
the harmonic oscillator (defined without the usual factor of 4) 

(3.1) 

(3.2) 

2 Ho = p 2  + x 

Holn) = (2n + 1)ln) = &,,In). 

H = Ho + A x 2 / (  1 + gx2) 

In this basis the Hamiltonian 

(3.3) 
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is an infinite-dimensional matrix and has no readily discernible structure (patterns of 
zero elements, for example) that would lead one to suspect the existence of the solutions 
in question. From (2.13) we see that these solutions are in fact confined to the 
(N+ 1)-dimensional subspaces IO), 12), . . . ,12N) for even parity and /I), 13), . . , 12N + 
1) for odd parity. For a given N there are N + 1  such solutions, one of which 
corresponds to A = O  and is just, according to (2.11), the state IN) (even) or IN+ 1) 
(odd). 

We begin by investigating the matrix elements of the interaction term in (3.3) in the 
oscillator basis. We write 

(3.4) 
12 aniIi> n, i odd 
i = l  

and seek to establish certain facts about the ani in a rather general way (in particular 
without introducing any explicit expressions and thereby restricting the analysis to this 
one case). Henceforth we will consider the even-parity case only; odd-parity states are 
treated identically by simply taking odd indices and state labels. The following 
important theorem holds: 

Theorem 3.1. The coefficients ani obey the relations 

n > 2  m>n.  a n n - 2  - -  Uno an2 -=-- -- . . .  13.5) 

Proof. Equation (3.4) may be rewritten as 

in consequence of the commutativity of x 2  and 1 + g x 2 .  Taking matrix elements of both 
sides with every (even) oscillator state in turn leads to the infinite-matrix equation 

where a, /3 and y, S are the oscillator matrix elements of x 2  and 1 + gx2 respectively. The 
structure of (3.6) follows directly from the fact that x 2  and 1 +gx2 are both tri-diagonal 
in the oscillator basis. It is easy to show, by partitioning ( 3 4 ,  that 

(3.7) 

a n n - 2  1 
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where 

x=  i".. 0 . :,, i2,* S I  * * *  ~~~ 

Yn-2 

and that, with the same partitioning and m > n, 

iz,) = -an-zamnX. 

Then the truth of theorem 3.1 is evident on comparing (3.8) with (3.7). 

(3.7a) 

(3.8) 

3.2. The solutions 

Having ascertained the validity of (3 .3,  we observe that, if there exists a vector 
(yo,  y2 , .  . . , yn-2)T with the property that 

E O + ~ ~ O O  ha20 Aa4o . . .  
ha20 ~ 2 + A a 2 2  Aa42 . . .  [ A440 A442 * ' .  

Yn-2 

(3.9) 

and which is at the same time orthogonal to X (3.7a), then E will be an eigenvalue of 
the full Hamiltonian and the augmented vector ( y o ,  y 2 .  . .; y,+ 0, 0, . . .)T will be the 
corresponding eigenvector. The orthogonality constraint implies that such vectors will 
only exist, if at all, for certain values of A. We now assert that the polynomial solutions 
of 8 2 are of just this kind. 

To verify the truth of this assertion we rewrite the eigenvalue problem as 

A x ~ Y ( x )  = (1 +gx2)(E-p2--X2)y(X). 

Then, expanding y (x )  in the oscillator functions, we get an infinite set of linear 
equations for the expansion coefficients. We seek solutions for which all the coefficients 
vanish except y o , .  . . , yn-2. This leads directly to the consistency condition (cf (2.11)) 

A =(E-E , -z )~  (3.10) 

and the finite-dimensional secular equation 

EO-En-2  0 0 
E 2 -  En-2 

Yn-2  
1 f ~ n - 2  0 0 En-2- En-2 

1+gao goo 0 
goo. 1 + @ 2  gg2 

0 

(3.11) 



1224 R R Whitehead, A Watt, G P Flessas and M A  Nagarajan 

where we have used the fact that Si = goi and yi = 1 + gai. Equation (3.1 1) will be seen 
with a little thought to be essentially the same as (2.14), but here its properties are more 
transparent. The matrix on the left of (3.1 1) is the product of a symmetric matrix and a 
negative diagonal matrix. It thus has n/2 real roots and its eigenvectors are orthogonal 
with respect to the (indefinite) metric 

En-2-En-2 

EO- En-2 

D = [  0 * . .  (3.12) 

Moreover, as is evident from (3.11), one root is always zero and the corresponding 
eigenvector is In - 2). Putting n - 2 = 2 N  to restore the labelling used at the beginning 
of this section and in 0 2, the zero root has eigenvector )2N) and its energy is E = E2N. 

The other N roots are linear combinations of the oscillator states IO), ]2), . . . ,12N - 2). 
It now remains only to show that the eigenvectors of (3.1 1) are indeed orthogonal to 

the vector X ( 3 . 7 ~ ) .  If we write (3.11) as 

we have 

and since the last element of D (3.12) is zero it is evident that T-ly is orthogonal to the 
vector (0, 0, . . . , 0, l)T in which there are 4 2  - 1 zeros. But (0, 0, . . . , 0, l)TT-' = 
constant X X T  in view of the relationships between a, p and y, 6, and the required 
orthogonality is verified. 

From the generality of the above discussion we can deduce immediately that any 
Hamiltonian 

H = Ho + h (a + bG)-'G 

where the operator G is tri-diagonal in the basis in which Ho is diagonal will possess 
analogous systems of solutions. 

4. The SolatEonS as Starmiam 

We show here that the solutions found in 00 2 and 3 have properties analogous to those 
of the so-called Sturmians (Rotenberg 1962). Equation (1.1) can be rearranged as 

Using condition (2.11) and the notation of § 3 (cf (3.10)) the right-hand side is simply 
E , , - ~ Y  ( x ) .  To calculate the terminating polynomial-type solutions, therefore, we solve 
(4.1) by varying A until the boundary conditions y (*a) = 0 are satisfied, always keeping 
the coefficient of y ( x )  on the right-hand side equal to E,,-~. But this is just the 
prescription for calculating Sturmian functions-the normal eigenparameter is held 
fixed while the strength of the interaction is varied. 
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Consider two such functions yl(x), y2(x) obtained with the same en+ It can easily 
be shown from (4.1) that 

(4.2) 

which is the form taken here by the most important property of the Sturmians. Their 
other important property of completeness has here to be modified slightly. Our 
functions, corresponding to a given are complete in the space spanned by the 
oscillator functions IO), 12), . . . , In - 2) (for even parity) or Il), 13), . . . , In - 2) (for odd 
parity). 

In a convenient notation we may write the mth solution of (4.1) with E, -A,/g = 
E , , - ~  as 

ym(x) = P ~ ( E , , - ~ ,  x) e+" 

and then (4.2) becomes 

That is, the polynomials P m ( ~ n - 2 ,  x) are orthogonal with respect to the weight function 
e-"'/(l+ gx'). Unlike the standard kinds of orthogonal polynomials, however, these 
are not independent of the size of the space of monomials from which they are 
constructed. The highest power of x appearing in the P m ( ~ n - 2 ,  x) is determined by ~ ~ - 2 ,  

and there is no particular connection between polynomials corresponding to different 

To call the P,(E,-~, x) orthogonal polynomials when they are orthogonal only in the 
restricted sense described and when, expressed as sums of monomials, they each have, 
for given the same degree of complexity may seem to be stretching a point. 
However, the important thing about orthogonal polynomials is not the highest power of 
x that a polynomial contains but the number of real zeros it possesses. In fact, ordinary 
orthogonal polynomials possess only real zeros. The P,(E"-~, x )  on the other hand 
have in general both real and complex zeros. Table 1 shows the three solutions, for 
g = 1, corresponding to en-2 = 9. Here the IO), 12) and 14) oscillator states are involved. 
The A = 0 solution is just the 14) state and it has four real zeros. The other two solutions 
have two real zeros and no real zeros respectively. Our polynomials thus appear to have 
a behaviour analogous to that of the usual orthogonal polynomials. Within a given set 
corresponding to a fixed ~ ~ - 2  the number of real roots varies in steps of two up to the 
maximum possible in the A = 0 solution. 

En-2. 

Table 1. Polynomials and A values for the case E,,+ = 9, g = 1. 

0 1 - 4x2 + $x4 
-8.88 (1 -0.562x2)(1 +x') 
-17.12 (1+3.562x2)(1+x2) 
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We have shown that polynomial solutions of the form (2.1) with P ( t )  given by (2.13) 
exist for any given n. Although solutions of a generally similar character are known to 
exist for other non-harmonic oscillators, this is the only case we know .of where general 
proofs can be given. We also showed that the polynomial solutions may be viewed as 
the Sturmians of the differential equation (4.1), and that in consequence they may be 
regarded as a new species of non-classical orthogonal polynomials. 
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